Approximation scheme for master equations: Variational approach to multivariate case.
نویسنده
چکیده
We study an approximation scheme based on a second quantization method for a chemical master equation. Small systems, such as cells, could not be studied by the traditional rate equation approach because fluctuation effects are very large in such small systems. Although a Fokker-Planck equation obtained by the system size expansion includes the fluctuation effects, it needs large computational costs for complicated chemical reaction systems. In addition, discrete characteristics of the original master equation are neglected in the system size expansion scheme. It has been shown that the use of the second quantization description and a variational method achieves tremendous reduction in the dimensionality of the master equation approximately, without loss of the discrete characteristics. Here, we propose a new scheme for the choice of variational functions, which is applicable to multivariate cases. It is revealed that the new scheme gives better numerical results than old ones and the computational cost increases only slightly.
منابع مشابه
A field theoretic approach to master equations and a variational method beyond the Poisson ansatz
We develop a variational scheme in a field theoretic approach to a stochastic process. While various stochastic processes can be expressed using master equations, in general it is difficult to solve the master equations exactly, and it is also hard to solve the master equations numerically because of the curse of dimensionality. The field theoretic approach has been used in order to study such ...
متن کاملField theoretic approach to master equations and a variational method beyond Poisson ansatz
We develop a variational scheme in a field theoretic approach to a stochastic process. While various stochastic processes can be expressed by master equations, in general it is difficult to solve the master equations exactly, and it is also hard to solve the master equations numerically because of the curse of dimensionality. The field theoretic approach has been used in order to study such com...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملA new numerical scheme for solving systems of integro-differential equations
This paper has been devoted to apply the Reconstruction of Variational Iteration Method (RVIM) to handle the systems of integro-differential equations. RVIM has been induced with Laplace transform from the variational iteration method (VIM) which was developed from the Inokuti method. Actually, RVIM overcome to shortcoming of VIM method to determine the Lagrange multiplier. So that, RVIM method...
متن کاملApproximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces
This paper introduces an implicit scheme for a continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup. The main result is to prove the strong convergence of the proposed implicit scheme to the unique solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 129 4 شماره
صفحات -
تاریخ انتشار 2008